

Innovative Drilling Solutions

Rock Drilling Tools

About Company

BIT1 are specialized manufacturers with twenty-five years history in manufacturing rock drilling tools in Korea. Our main products are drifting and tunneling tools, bench drilling tools, down the hole drilling tools, drilling tools or coal mining and diamond wire saw and so on. The products are widely used in surface drilling, underground drifting and tunneling, quarrying, water well industry, etc.

With twenty-five years research and development, BIT1 has piled a diverse experience as a manufacturer in Rock drilling tools. We have been exported rock drilling tools to many countries such as Japan, Russia, U.S.A, Malaysia.

BIT1 consistently continues to offer high quality of products and backup services. BIT1 is always ready to serve you at any time, we look forward to growing together with you.

Patent & Ceritificate

History

1984 Established JOONG YANG MACHINERY INDUSTRY CO., LTD Original equipment manufacturer contract with YOUNG 1987 POONG MACHINERY INDUSTRY CO., LTD Subcontractors contract with WINIA MANDO 1988 (MANDO'S subsidiary - The company have made household appliances; Air conditioning refrigerator etc.) 1990 Engine part supplier contract with KIA MOTOR 1997 Move to the Cheonan factory 2007 Install the second factory in Gwangmyeong 2011 Renamed BIT1

CONTENTS

COMPANY HISTORY	02
PATENT & CERITIFICATE	03
NOMENCLATURE	06
DOWN TO HOLE BIT	08
TAPER DRILL BIT	17
BUTTON BIT / ROD / COUPLING SLEEVE	18
SHANK ADAPTER	29
TRICONE BIT	38

Flat Face Button

This design offers 24% more, total carbide area. It's actually a stronger design. Also, this bit has 4 flushing holes instead of 2 flushing holes so will provide you more good cleaning. Useful for hard rock, abrasive rock, homogeneous rock application.

Hard Rock Button

It is designed for the toughest drilling condition with impact carbides and a hardened bit body. The gauge carbides are longer to provide excellent carbide retention. Useful for hard rock, abrasive rock, homogeneous rock application.

Ballistic Button

This bit is designed for use in limestone and other soft rock formations. It looks more pointed shape for the button than spherical buttons. Useful for medium hard rock, abrasive rock, homogeneous rock application.

Drop Center Spherical Button

Normally used in broken rock formations to obtain a straighter hole. This recessed area helps to guide the bit in a straight path, resisting the tendency to follow fractures in the rock. Useful for hard rock, abrasive rock, homogeneous rock, penetration rock application.

Drop Center Ballistic Button

This bit combines the straightening characteristics of the drop center bit with the speed of ballistic buttons. Available in selected sizes in the T thread group. Useful for medium hard rock, abrasive rock, homogeneous rock, penetration rock application.

Retract Spherical Button

Designed for applications requiring very straight hole. The long bit body works very efficiently for the straight hole at the deepest & seamed rock formation. Also cutting part of the bottom of bit body, it acts as a grinder for debris that come from the rock. Useful for hard, medium hard, abrasive fissured, penetration rock application.

Retract Ballistic Button

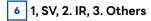
The long bit body works very efficiently for the straight hole at the deepest & seamed rock formation. Also cutting part of the bottom of bit body, it acts as a grinder for debris that come from the rock. Tips look more pointed shape than spherical buttons. Useful for medium hard, abrasive, homogeneous, fissured, penetration rock application.

CARBIDE SHAPE

Spherical Parabolic Hard rock and ultra-hard rock Medium hard rock and hard rock layers. Effective in a rock layer which causes wear in a great degree. **Ballistic** Conical Soft rock and medium hard rock Limestone. The tip end is sharp and layers. High drilling speed can be the drilling efficiency is excellent obtained compared with cross bit. This bit demonstrates its ability especially in limestone.

01 Nomenclature

Button Bit



3 BIT DIA 5 FLUSH HOLE WAY 1:0, 2:1, 3:2, 4:3, 5:4

1	PRODUCT
В	Bit
E	Extension Rod
D	Drifter Rod
М	M/F Rod
C	Coupling
S	Shank Adapter
Т	Tapered Rod
4	CARBIDE
S	Spherical

Ballistic Parabolic Conical

2	Thread foem
1	R25
2	R28
3	R32
4	R 38
5	T35
6	T38
7	T45
8	T51
9	T60
10	Taper 6
11	Taper 7
12	Taper 11
13	Taper 12


5	BODY TYPE
A	Flat Face
В	Drop center
C	Dome
D	Retract
Е	Retract Drop
F	Heavy duty
G	1*4 Type
Н	2*3 Type
I	2*4 Type
J	2*5 Type
K	2*6 Type
L	3*6 Type
М	3*6 WType

Button Bit



Drifting & Extension Rod

E-R38FD-3050-A

1	PRODUCT
-	D.:

3 DIAMETER

В	Bit
E	Extension Rod
D	Drifter Rod
М	M/F Rod
С	Coupling
S	Shank Adapter
Т	Tapered Rod

2	Material Shape
Н	Hexaaon

Round

4	Thread foem
A	R25
В	R28
C	R32
D	R38
E	T35
F	T38
G	T45
Н	T51

Coupling Sleeve C I - FF

1	2	3
	DDOF	NIOT.

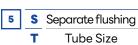
В	Bit
Ε	Extension Rod
D	Drifter Rod
M	M/F Rod
C	Coupling
S	Shank Adapter
Т	Tapered Rod

I	2	Material Shapes
ı		

1	Coupling
2	Adapter

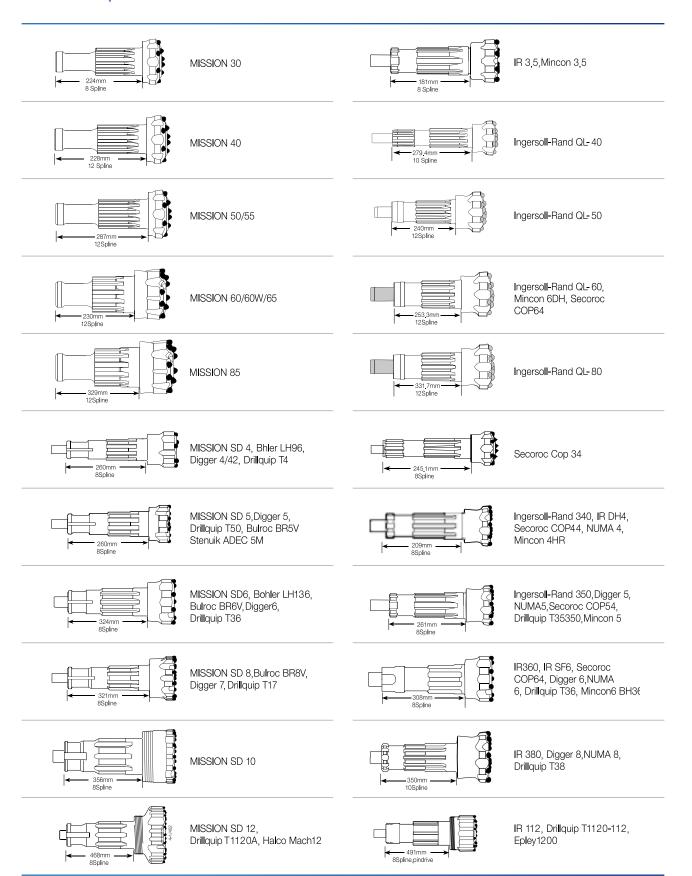
3	Thread foem
A	R25
В	R28
C	R32
D	R38
E	T35
F	T38
G	T45
Н	T51
T	T60

Shank Adapter


SA27-D495S

1 PRODUCT

2 DRIFTER TYPE


В	Bit
Е	Extension Rod
D	Drifter Rod
М	M/F Rod
C	Coupling
S	Shank Adapter
Т	Tapered Rod

3 Thread foem

4 LENGTH

Α	R25
В	R28
C	R32
D	R38
E	T35
F	T38
G	T45
Н	T51
T	T60

02 Bit Shank Indentification Chart

MISSION 30 Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	Butto		We	ight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Convex/Ballistic	90 95 100 105	3 ¹ / ₂ 3 ³ / ₄ 3 ⁷ / ₈ 4 ¹ / ₈	2 2 2 2	7 7 8 8	13 13 13 14	12 13 13 14	4 4 4.5 4.5	9 9 10 10
	Drop C enter/ Spherical	90 95 105	3 ¹ / ₂ 3 ³ / ₄ 4 ¹ / ₈	3 3 2	6 6 8	13 13 13	12 13 13	4 4 4,5	9 9 10
	Flat/Ballistic Spherical Gauge	100	3 ⁷ / ₈	2	8	13	13	4.5	10

MISSION 40 Bits				No. Air	No. Gauge			We	ight
MISSIST TO BILS		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	115	4 ¹/ ₂	2	8	16	13	7	15
_	Concave/Spriencal	115	4 / ₂ 4 ¹ / ₂	2	8	16	13	7	15
		121	4^{7}_{2}	2	8	16	13	7	15
		121	$4^{7}/_{4}$	2	8	16	13	7	15
		130	5 ¹ / ₈	2	8	16	14	7	15
		133	5 ¹ / ₄	2	8	16	14	7	15
		152	6	2	8	16	13	15	33
500									
	Flat/Spherical	110	4 ¹ / ₄	2	8	14	14	7	15
		115	4 ¹ / ₂	2	8	14	14	7	15
		121	4 ³ / ₄	2	8	14	14	7	15
		127	5	2	8	14	14	7	15
	Convex/Ballistic	110	4 ¹ / ₄	2	8	14	14	7	15
		115	41/2	2	8	14	14	7	15
		115	4 ³ / ₄	2	8	16	16	7	15
		127	5	2	8	14	14	7	15
	Convex/Ballistic	110	4 ¹ / ₄	2	8	14	13	7	15
		115	41/2	2	8	14	14	7	15
		121	41/2	2	8	16	14	7	15
	Hole Opener	102r	nm to 15	 52mm 4" 	to 6"				

MISSION 40C Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge			We	ight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	115 115 121 121 130 133 152	4 ¹ / ₂ 4 ¹ / ₂ 4 ³ / ₄ 4 ³ / ₄ 5 ¹ / ₈ 5 ¹ / ₄	2 2 2 2 2 2 2 2	8 8 8 8 8	16 16 16 16 16 16	13 13 13 13 14 14 14	7 7 7 7 7 7	15 15 15 15 15 15 15 33
	Flat/Spherical	110 115 121 127	4 ¹ / ₄ 4 ¹ / ₂ 4 ³ / ₄ 5	2 2 2 2	8 8 8 8	14 14 14 14	14 14 14 14	7 7 7 7	15 15 15 15
	Convex/Ballistic	110 115 115 127	4 ¹ / ₄ 4 ¹ / ₂ 4 ³ / ₄ 5	2 2 2 2	8 8 8 8	14 14 16 14	14 14 16 14	7 7 7 7	15 15 15 15
	Convex/Ballistic	110 115 121	4 ¹ / ₄ 4 ¹ / ₂ 4 ¹ / ₂	2 2 2	8 8 8	14 14 16	13 14 14	7 7 7	15 15 15
	Hole Opener	102r	nm to 15	2mm 4"	to 6"				

MISSION 50C Bits			Bit Diameter Dimension																Dimension A		Dimension Air Gauge				Weight	
		mm	inch	Holes	Buttons	gauge	front	kg	lb																	
	Concave/Spherical	130 130 133 133 137 140 140 146 146 152	5'/ ₈ 5'/ ₄ 5'/ ₄ 5'/ ₄ 5'/ ₄ 5'/ ₂ 5'/ ₄ 5'/ ₄ 5'/ ₄ 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16 16 16 16 16 16 16 16 16	14 14 14 14 16 16 16 16	12.2 12.2 12.5 12.5 13 13.2 13.2 14 14 15	27 27 27 27 28 28 29 29 31 31 33																	
	Flat/Spherical	142	5 ⁵ / ₈	3	9	16	14	13.4	29																	
	Convex/Ballistic	133 140 146 149 152	5 ¹ / ₄ 5 ¹ / ₂ 5 ⁴ / ₃ 5 ⁷ / ₈ 6	3 3 3 3	9 9 9 9	16 16 16 16 18	16 16 16 16	12.5 13.2 14 14 15	27 29 31 32 33																	

MISSION 55S Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	Butto		We	ight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	140	5 ¹ / ₂	2	8	16	16	13.2	29
		140	5 ¹ / ₂	2	8	16	16	13.2	29
		146	5³/₄	2	8	16	16	14	31
		146	5³/₄	2	8	16	16	14	31
		152	6	2	8	18	16	15	33
	Flat/Spherical	142	5 ⁵ / ₈	3	9	16	14	13.4	29
	Convex/Ballistic	140	5 ¹ / ₂	3	9	16	16	13.2	29
		146	5³/ ₄	3	9	16	16	14	31
		149	5 ⁷ / ₈	3	9	16	16	14	32
		152	6	3	9	18	16	15	33

MISSION 55S & 55G Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	Butto m		We	ight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	140	5 ¹ / ₂	2	8	16	16	13.2	29
		140	5 ¹ / ₂	2	8	16	16	13.2	29
		146	5 ³ / ₄	2	8	16	16	14	31
		146	5³/ ₄	2	8	16	16	14	31
		152	6	2	8	18	16	15	33
	Flat/Spherical	142	5 ⁵ / ₈	3	9	16	14	13.4	29
	Convex/Ballistic	140	5 ¹ / ₂	3	9	16	16	13.2	29
		146	5 ³ / ₄	3	9	16	16	14	31
		149	5 ⁷ / ₈	3	9	16	16	14	32
		152	6	3	9	18	16	15	33

MISSION 60, 60C, 60W & CW Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	Butto m	n Dia. m	We	ight
, , , , , , , , , , , , , , , , , , , ,		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	152	6	2	8	18	18	21	47
		152	6	2	8	18	18	21	47
		154		2	8	18	18	21	47
		155	6 ¹ / ₈	2	8	18	18	21	47
		155	6¹/ ₈	2	8	18	18	21	47
		159	6¹/₄	2	8	18	18	22	48
		159	6 ¹ / ₄	2	8	18	18	22	48
		165	6 ¹ / ₂	3	9	18	18	22	48
		165	6 ¹ / ₂	3	9	18	18	22	49
		172	6³/₄	3	9	18	18	24	52
		172	6³/₄	3	9	18	18	24	52
		178	7	3	9	18	16	24	52
		190	7 ¹ / ₂	3	9	18	16	26	58
		203	8	3	9	18	16	28	62
		219	8 ⁵ / ₈	3	9	18	16	34	75
		254	10	3	9	18	16	45	100
	Flat/Spherical	165	6 ¹ / ₂	3	9	18	18	22	49
	Convex/Ballistic	152	6	3	9	18	18	22	48
		155	6 ¹ / ₈	3	9	18	18	22	48
		159	6¹/₄	3	9	18	18	22	49
		165	6 ¹ / ₂	3	9	18	18	23	51
		172	6³/₄	3	9	18	18	24	52
		178	71/2	3	9	18	18	24	52
Cor	nvex/Ballistic/Spherical	172	6 ³ / ₄	3	9	18	18	24	52
	Convex/Ballistic	190	71/2	2	10	18	18	26	58
	Hole Opener	152n	nm to 20	 3mm, 6"	to 8"				
	Hole Opener	203m	m to 254	mm, 6"	to 10"				

MISSION 65 & 65C Bits	Face/ Button Shape	Bit Diameter Dimension		No. Air	No. Gauge	Butto		We	ight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	165 165	6 ¹ / ₂ 6 ¹ / ₂	3 3	8 8	18 18	18 18	22 22	48 49
		172 172 178 190 203 219 254	6 ³ / ₄ 6 ³ / ₄ 7 7 ¹ / ₂ 8 8 ⁵ / ₈	3 3 3 3 3 3 3	8 8 8 8 8 9	18 18 18 18 18 18	18 18 16 16 16 16	24 24 24 26 28 34 45	52 52 52 52 58 62 75 100
	Flat/Spherical	165	6 ¹ / ₂	3	9	18	18	22	49
	Convex/Ballistic	165 172 178	6 ¹ / ₂ 6 ³ / ₄ 7	3 3 3	9 9 9	18 18 18	18 18 18	23 24 24	59 52 52
	Concave/Spherical	165 172	6 ¹ / ₂ 6 ³ / ₄	3	9 9	18 18	18 18	23 24	50 52
c	onvex/Ballistic/Spherical	172	6 ³ / ₄	3	9	18	18	24	52
	Convex/Ballistic	190	71/2	2	10	18	18	26	58
	Hole Opener	152n	nm to 20	 3mm, 6"	to 8"				
	Hole Opener	203m	m to 254	1mm, 6"	to 10"				

MISSION 80W Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	Butto m		We	ight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	200 203 203 203 219 219 222 229 241 254	7 ¹ / ₈ 8 8 8 ⁵ / ₈ 8 ⁵ / ₈ 9 9 ¹ / ₂	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 9 9 9 9 12 12 12 12	18 18 18 22 18 18 18 18	18 18 18 18 18 18 18 18	41 41 41 42 42 29 53 57 57	91 91 91 93 93 108 117 125 125
Co	nvex/Ballistic/Spherical	200 303	7 ⁷ / ₈ 8	3	9	18 18	18 18	41 41	91 91
	Convex/Ballistic	219 222	8 ⁵ / ₈ 8 ³ / ₄	3 3	9 9	18 18	18 18	42 49	93 108

MISSION 85 Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	Butto		We	eight
mission so bus		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	200	71/8	3	9	18	18	41	91
		203	8	3	9	18	18	41	91
		203	8	3	9	18	18	41	91
		203	8	3	9	22	18	41	91
		219	8 ⁵ / ₈	3	9	18	18	42	93
		219	8 ⁵ / ₈	3	9	18	18	42	93
		222	8 ³ / ₄	3	12	18	18	29	108
		229	9	3	12	18	18	53	117
		241	91/2	3	12	18	18	57	125
		254	10	3	12	18	18	57	125
		200	77/8	3	9	18	18	41	91
Co	nvex/Ballistic/Spherical	303	8	3	9	18	18	41	91
		219	8 ⁵ / ₈	3	9	18	18	42	93
	Convex/Ballistic	222	8 ³ / ₄	3	9	18	18	49	108
		Bit Dia	ameter	No.	No.	Butto	ı Dia.	We	eight

Silverdril SD 5 Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	Butto		We	ight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	130	5 ¹ / ₈	2	8	16	14	14	91
63 (3		133	5¹/₄	2	8	16	14	14	32
		140	5 ¹ / ₂	2	8	16	14	15	32
		146	5 ³ / ₄	2	8	16	14	15	33
		149	5 ⁷ / ₈	2	8	16	14	16	33
		152	6	2	8	16	14	18	36
									40
	Convex/Ballistic	140	51/2	3	9	16	14	14	32
	Foot Valve							0.05	0.1

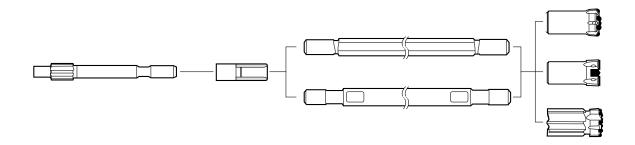
Silverdril SD 6 Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	Butto		We	eight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Flat/Spherical	152	6	2	8	16	16	27	60
		155	6 ¹ / ₈	2	8	16	16	27	60
		159	6 ¹ / ₄	2	8	16	16	28	61
		165	61/2	2	8	16	16	28	62
		172	6 ³ / ₄	2	8	16	16	30	66
		178	7	2	8	16	16	32	71
		190	71/2	2	8	16	16	33	73
		203	8	2	10	16	16	35	78
		219	8 ⁵ / ₈	2	10	16	16	40	88
		254	10	3	12	16	16	52	114
	Convex/Ballistic	165	6 ¹ / ₂	3	9	16	16	28	62
		165	6 ¹ / ₂	3	9	18	18	28	62
		172	6 ³ / ₄	3	9	18	18	30	66
	Foot Valve							0.5	1

Silverdril SD 8 Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	Butto		We	ight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
***	Concave/Spherical	194	7 ⁵ / ₈	2	10	18	18	40	89
		200	7 ⁷ / ₈	2	10	18	18	41	91
		203	8	2	10	18	18	42	92
		203	8	2	10	18	18	42	92
		219	8 ⁵ / ₈	2	10	18	18	54	119
		222	83/4	2	10	18	18	56	124
		222	8 ³ / ₄	3	12	18	18	56	124
		241	91/2	3	12	18	18	63	138
		251	97/8	3	12	18	18	64	142
		254	10	3	12	18	18	67	147

Silverdril SD 10 Bits	Face/ Button Shape		ameter nsion	No. Air	No. Gauge	m	n Dia. m	We	ight
		mm	inch	Holes	Buttons	gauge	front	kg	lb
	Concave/Spherical	254	10	3	12	18	18	108	238
	Fishing thread	270	10 ⁵ / ₈		12	18	18	108	238
	Foot Valve								0.5

03 Tapered Drill Equipment

Tapered Drill Bit


H22(7/8") Taper 12" Series

Bit			nsion	В	uttons*E	Button Di	а	Gauge	Flus	hing	App	rox	
Dit	Carbide Shape	D	ia	Gai	uge	Fre	ont	Buttons	Но	le	Wei	ight	Part No.
	Shape	mm	inch	EA	mm	EA	mm	Angle	front	side	kg	lb	
	ВА	32	1 1/4"	5	7	2	7	40	1	1	0.3	0.75	B13-032B-J1-3
	ВА	35	1 3/8"	5	7	2	7	35	1	1	0.3	0.75	B13-035B-J1-3
	BA	38	1 1/2"	5	8	2	7	35	1	1	0.4	0.85	B13-038B-J1-3

▶ H22(7/8") Taper 7" Series

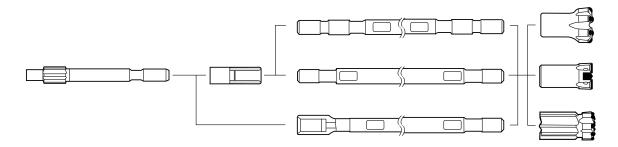
Bit		Dime	nsion	Е	Buttons*E	Button D	ia	Gauge	Flus	hing	App	rox	
Dit .	Carbide Shape	D	ia	Ga	uge	Fre	ont	Buttons	Но	ole	We	ight	Part No.
	Onape	mm	inch	EA	mm	EA	mm	Angle	front	side	kg	lb	
	ВА	32	1 1/4"	3	8	2	7	35	1	1	0.3	0.75	B11-032B-H1-3
	ВА	26	1 1/32"	4	8	1	7	30	1	1	0.25	0.70	B11-026G-I1-3
	ВА	28	1 1/8"	4	7	1	7	35	1	1	0.28	0.73	B11-028G-I1-3
	ВА	30	1 3/16"	4	7	1	7	35	1	1	0.3	0.75	B11-030G-I1-3
	ВА	32	1 1/4"	4	8	1	7	35	1	1	0.3	0.75	B11-032G-I1-3
	ВА	35	1 3/8"	4	8	2	7	35	1	1	0.4	0.85	B11-035B-I1-3
	ВА	32	1 1/4"	5	7	2	7	32	1	1	0.3	0.75	B11-032B-J1-3
	ВА	35	1 3/8"	5	7	2	7	32	1	1	0.3	0.75	B11-035B-J1-3
	ВА	38	1 1/2"	5	8	2	7	35	1	1	0.4	0.85	B11-038B-J1-3
	ВА	41	1 5/8"	5	8	2	7	35	1	1	0.4	0.85	B11-041B-J1-3
	ВА	45	1 3/4"	5	9	2	7	35	1	1	0.5	0.95	B11-045B-J1-3

04 Drifting Drilling Equipment

▶ R32(1-1/4") Series

Bit		Dime	nsion	В	uttons*E	Button Di	ia	Gauge	Flus	hing	App	rox	
Dit .	Carbide Shape	D	ia	Ga	uge	Fre	ont	Buttons	Но	ole	We	ight	Part No.
	Silape	mm	inch	EA	mm	EA	mm	Angle	front	side	kg	lb	
	SP	41	1 5/8"	5	9	2	8	25	2		0.6	1.05	B03-041S-J1-1
	SP	43	1 11/16"	5	9	2	8	30	2	1	0.6	1.05	B03-043S-J1-1
	SP	45	1 3/4"	6	9	3	8	30	3	1	0.7	1.15	B03-045S-J1-1
	SP	38	1 1/2"	5	8	2	8	30	3	1	0.5	0.95	B03-038S-L1-1
	SP	41	1 5/8"	6	8	3	8	30	3	1	0.6	1.05	B03-041S-L1-1
	ВА	41	1 5/8"	6	8	3	8	30	3	1	0.6	1.05	B03-041 B-L1-1
	SP	43	1 11/16"	6	9	3	8	30	3	1	0.7	1.15	B03-043S-L1-1
Flat Face	SP	45	1 3/4"	6	10	3	8	30	3	1	0.7	1.15	B03-045S-L1-1
	ВА	45	1 3/4"	6	10	3	8	30	3	1	0.7	1.15	B03-045B-L1-1
	SP	48	1 7/8"	6	10	3	9	30	3	1	0.95	1.40	B03-048S-L1-1
	ВА	48	1 7/8"	6	10	3	9	30	3	1	0.95	1.40	B03-048B-L1-1
	SP	51	2"	6	10	3	9	30	3	1	1	1.45	B03-051S-L1-1
	ВА	51	2"	6	10	3	9	30	3	1	1	1.45	B03-051B-L1-1
	sP	57	2 1/4"	6	11	3	9	30	3	1	1.2	1.65	B03-057S-L1-1
	ВА	57	2 1/4"	6	11	3	9	30	3	1	1.2	1.65	B03-057B-L1-1
	SP	64	2 1/2"	8	11	4	10	35	3		1.7	2.15	B03-064S-L1-1
	ВА	64	2 1/2"	8	11	4	10	35	3		1.7	2.15	B03-064B-L1-1
	SP	45	1 3/4"	6	10	3	8	30	3	1	0.8	1.25	B03-45S-M4-1
	ВА	45	1 3/4"	6	10	3	8	30	3	1	0.8	1.25	B03-45B-M4-1
	PA	45	1 3/4"	6	10	3	8	30	3	1	0.8	1.25	B03-45P-M4-1
	SP	51	2"	6	10	3	9	30	3	1	1	1.45	B03-51S-M4-1
Flat Face	ВА	51	2"	6	10	3	9	30	3	1	1	1.45	B03-51B-M4-1
	PA	51	2"	6	10	3	9	30	3	1	1	1.45	B03-51P-M4-1
	PA	57	2 1/4"	6	11	3	9	30	3		1.2	1.65	B03-57P-M4-1
	PA	64	2 1/2"	8	11	4	10	35	3		1.7	2.15	B03-64P-M4-1
	ва	57	2 1/4"	6	10	3	10	35	3		1.6	2.05	B03-57B-D4-1
	SP	64	2 1/2"	8	11	4	10	35	3		1.7	2.15	B03-64S-D4-1
Retract													

• H22(7/8") Taper 12" Series


Drifting Rod	Hexa	gon H	Ler	ngth	Approx	' Weight	Thr	ead	Part No.
Diffiting Rod	mm	inch	mm	ft / inch	kg	lb	Α	В	Part No.
Hexagon Single Rod			3090	10' 2"	19.7	20.15	R32	R38	D-H32CD-3090-A
	32	1 1/4"	3700	12' 2"	23.4	23.85	R32	R38	D-H32CD-3700-A
<u>⊚</u> <u>∓</u> н			4310	14'	27.2	27.65	R32	R38	D-H32CD-4310-A
			3090	10' 2"	19.5	19.95	R32	T38	D-H32CF-3090-A
А - В	32	1 1/4"	3700	12' 2"	23.2	23.65	R32	T38	D-H32CF-3700-A
			4310	14'	27.1	27.55	R32	T38	D-H32CF-4310-A
Hexagon Single Rod <u>◎</u> <u>†</u> H			4310	14' 2"	30.3	30.75	R32	R38	D-H35CD-4310-A
	35	1 3/8"	4920	16' 2"	36.9	37.35	R32	R38	D-H35CD-4920-A
L B			4920		36.9	37.35	R32	T38	D-H35CF-4920-A

Extension Rod	Ro	und D	Ler	ngth	Approx	' Weight	Thr	ead	Part No.
Extension Rou	mm	inch	mm	inch	kg	lb	Α	В	Part No.
Round Single Rod			1000	3' 3"	5.64	6.09	R32	R32	E-R32CC-1000-A
			1220	4"	6.88	7.33	R32	R32	E-R32CC-1220-A
<u>⊚</u> <u>∓</u> □	32	1 1/4"	1820	6"	10.04	10.49	R32	R32	E-R32CC-1820-A
	32	1 1/4	2440	8"	13.72	14.17	R32	R32	E-R32CC-2440-A
A B			3050	10"	17.3	17.75	R32	R32	E-R32CC-3050-A
			3660	12"	20.63	21.08	R32	R32	E-R32CC-3660-A
Round Single Rod									
<u>⊚</u> ‡□	39	1 9/16"	4350	14"	37.3	37.75	R32	T38	E-R39CF-4350-A
A B	39	1 9/10	4920	16' 1/2"	42.1	42.55	R32	T38	E-R39CF-4920-A

Coupling Sleeve	Ro	und D	Ler	ngth	Approx' Weight Thread		Thread		Part No.
Coupling Sieeve	mm	inch	mm	inch	kg	lb	Α	В	Part No.
1	44	1 3/4"	150	6"	1	1.45	R32	R32	C1-CC
<u> </u>	54	2 1/8"	170	6 3/4"	1.7	2.15	R38	R38	C1-DD
	54	2 1/8"	190	7/4"	1.8	2.25	T38	T38	C1-FF

Adapter Coupling	Ro	und D	Ler	ngth	Approx	' Weight	Thr	ead	Part No.
Adapter Coupling	mm	inch	mm	inch	kg	lb	Α	В	Part No.
T D L B	54 54 54	2 1/8" 2 1/8" 2 1/8"	181 190 190	7 9/64" 7.4" 7.4"	1.7 1.9 1.8	2.15 2.35 2.25	R32 T32 R38	R38 T38 T38	C2-CD C2-CF C2-DF

05 Bench Drilling Equipment

▶ T38(1-1/2") Series

Bit			nsion		Е	uttons*E	Button Di	ia		Gauge	Flus	shing	Ар	prox	
ы	Carbide Shape	D	ia	Ga	uge	Fre	ont	Cer	nter	Buttons	Н	ole	We	eight	Part No.
	Onape	mm	inch	EA	mm	EA	mm	EA	mm	Angle	front	side	kg	lb	
	SP	64	2 1/2"	8	11	4	10			35	2		1.5	1.95	B06-064S-A3-1
	ВА	64	2 1/2"	8	11	4	10			35	2		1.5	1.95	B06-064B-A3-1
	SP	70	2 3/4"	8	10	6	10			35	2		1.7	2.15	B06-070S-A3-1
Flat Face	SP	76	3"	8	11	4	11			35	2		1.9	2.35	B06-076S-A3-1
	ВА	76	3"	8	11	4	11			35	2		1.9	2.35	B06-076B-A3-1
	SP	89	3 1/2"	9	11	6	10			35	3		3.7	4.15	B06-089S-A4-1
	ВА	89	3 1/2"	9	11	6	10			35	3		3.7	4.15	B06-089B-A4-1
	SP	102	4"	9	12	6	12			35	3		4.6	5.05	B06-102S-A4-1
Flat Face	ВА	102	4"	9	12	6	12			35	3		4.6	5.05	B06-102B-A4-1
	SP	102	4"	8	14	5	12			35	4		4.8	5.25	B06-102S-A5-2
	ВА	102	4"	8	14	5	12			35	4		4.8	5.25	B06-102B-A5-2
Flat Face															
	<u> </u>		0.4/01		40		4.4			0.5					D00 004D 444
	PA	64	2 1/2"	6 7	12	3	11			35	3		1.5	1.95	B06-064P-A4-1
	PA	76	3	/	12	3	11			35	3		1.8	2.25	B06-064P-A4-1
Flat Face															
	SP	64	2 1/2"	6	11	4	10			35	3		1.42	1.87	B06-064S-B4-2
	BA	64	2 1/2"	6	11	4	10			35	3		1.42	1.87	B06-064B-84-2
	SP	76	3"	6	11	4	11			35	3		2.6	3.05	B06-076S-B4-2
Drop Center	BA	76	3"	6	11	4	11			35	3		2.6	3.05	B06-076B-84-2
2100 0011101	SP	89	3 1/2"	8	12	5	44			35	4		3.6	4.05	B06-089S-B5-2
	BA	89	3 1/2"	8	12	5 5	11 11			35	4		3.6	4.05	B06-089B-B5-2
	SP	102	4"	8	14	5	12			35	4		5.5	5.95	B06-009B-B5-2
Drop Center	BA	102	4"	8	14	5	12			35	4		5.5	5.95	B06-102B-B5-2
Brop contor			·												
	SP SP	64 76	2 1/2"	6 8	12 12	3 4	11 11			35 35	3 2		1.7 2.7	2.15	B06-064S-F1-2 B06-076S-F1-2
	SP	89	3 1/2"	8	13	5	13			35	2		3.9	4.35	B06-076S-F1-2
Heavy Duty		00	0 1/2		10	0	10				_		0,0	7,00	D00-0000-1 1-2
, , , , , , , , , , , , , , , , , , ,															

▶ T38(1-1/2") Series

Bit			ension		В	luttons*l	Button D	ia		Gauge	Flus	shing	Ap	prox	
DIL	Carbide	0	Dia	Ga	uge	Fr	ont	Cei	nter	Buttons	Н	ole	w.	eight	Part No.
	Shape	mm	inch	EA	mm	EA	mm	EA	mm	Angle	front	side	kg	lb	
	SP	64	2 1/2"	8	11	4	10			35	2		1.9	2.35	B06-064S-D1-3
	ВА	64	2 1/2"	8	11	4	10			35	2		1.9	2.35	B06-064B-D1-3
	SP	76	3"	8	11	4	11			35	2		3	3.45	B06-076S-D1-3
	ВА	76	3"	8	11	4	11			35	2		3	3.45	B06-076B-D1-3
Retract Flat Face	SP	76	3"	8	12	4	10			35	2		3	3.45	B06-076S-D1-3
Troudser later doo	ВА	76	3"	8	12	4	10			35	2		3	3.45	B06-076B-D1-3
	SP	89	3 1/2"	8	11	6	11			35	4		5.5	5.95	B06-089S-D5-2
	ВА	89	3 1/2"	8	11	6	11			35	4		5.5	5.95	B06-089B-D5-2
	SP	102	4"	8	12	6	11			35	4		7.2	7.65	B06-102S-D5-2
Retract Flat Face	ВА	102	4"	8	12	6	11			35	4		7.2	7.65	B06-102B-D5-2
	SP	64	2 1/2"	6	11	3	10	1	10	35	3		1.9	2.35	B06-064S-E4-2
	ВА	64	2 1/2"	6	11	3	10	1	10	35	3		1.9	2.35	B06-064B-E4-2
	SP	76	3"	6	11	3	11	1	11	35	3		3	3.45	B06-076S-E4-2
Retract Drop Center	ВА	76	3"	6	11	3	11	1	11	35	3		3	3.45	B06-076B-E4-2
	SP	64	2 1/2"	8	11	4	10	1	9	35	4		1.9	2.35	B06-064S-E5-1
	ВА	64	2 1/2"	8	11	4	10	1	9	35	4		1.9	2.35	B06-064B-E5-1
	SP	76	3"	8	11	4	11	1	10	35	4		3	3.45	B06-076S-E5-1
	BA	76	3"	8	11	4	11	1	10	35	4		3	3.45	B06-076B-E5-1
Retract Drop Center	SP	89	3 1/2"	8	11	4	11	2	9	35	4	1	5.3	5.75	B06-089S-E5-1
	ВА	89	3 1/2"	8	11	4	11	2	9	35	4	1	5.3	5.75	B06-089B-E5-1
	SP	89	3 1/2"	8	12	4	11	2	9	35	4	1	5.3	5.75	B06-089S-E5-2
	BA	89	3 1/2"	8	12	4	11	2	9	35	4	1	5.3	5.75	B06-089B-E5-2
	ВА	95	3 3/4"	8	11	4	11	2	10	35	4	1	6	6.45	B06-095B-E5-1
	SP	95	3 3/4"	8	12	4	11	2	10	35	4	1	6	6.45	B06-095S-E5-1
	BA	95	3 3/4"	8	12	4	11	2	10	35	4	1	6	7.55	B06-095B-E5-1
	BA	102	4"	8	12	4	11	2	11	35	4	1	7.1	7.55	B06-102B-E5-1
	BA	117	4"	8	14	4	13	3	13	35	4		8.7	9.15	B06-117B-E5-2
	BA	127	5"	8	14	4	14	3	13	35	4		10.5	10.95	B06-127B-E5-2

05 Bench Drilling Equipment

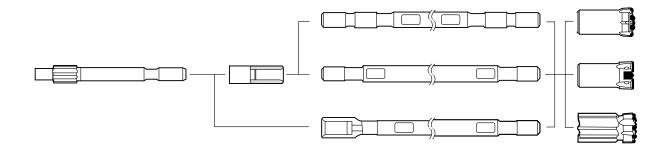
▶ T38(1-1/2") Series

Extension Rod	Hexagon H		Length		Approx'	Weight	Thr	ead	Part No.
Extension Rod	mm	inch	mm	ft	kg	lb	Α	В	Part No.
Hexagon Rod			3050	10'	20.4	20.85			E-H32FF-3050-A
	32	1 1/4"	3660 4270	12' 14'	24 26	24.45	T38	T38	E-H32FF-3660-A E-H32FF-4270-A
Ä B			4270	14	∠0	26.45			E-M32FF-427U-A

Extension Red	Ro	und D	Ler	ngth	Approx	' Weight	Thr	ead	Part No.	
Extension Rod	mm	inch	mm	ft / inch	kg	lb	Α	В	Part No.	
Round Single Rod			1020	3 3"	8.2	8.65			E-R39FF-1020-A	
			1220	4'	9.9	10.35			E-R39FF-1220-A	
			1525	5'	12.3	12.75			E-R39FF-1525-A	
<u>⊚</u> <u>₹</u> □				1830	6'	14.7	15.15			E-R39FF-1830-A
	39	1 1/2"	2020	6.6'	17.7	18.15	T38	T38	E-R39FF-2020-A	
A B			3050	10'	24.7	25.15			E-R39FF-3050-A	
			3660	12'	29,4	29.85			E-R39FF-3660-A	
			4000	12'	32.1	32.55			E-R39FF-4000-A	
			4270	14'	34.7	35.15			E-R39FF-4270-A	
I .	I	1	I	1	1	I	I	I	1	

Extension Rod	Ro	und D	Ler	gth	Approx'	' Weight	Thr	ead	Part No.
Extension Rou	mm	inch	mm	ft	kg	lb	Α	В	rait No.
Round Tandem Rod			3050	10'	24.7	25,15			E-R39FF-3050-B
	20	4.0/46"	3660	12'	29.4	29.85	T20	T20	E-R39FF-3660-B
	39	1 9/16"	4000	12'	32.1	32.55	T38	T38	E-R39FF-4000-B
A			4270	14'	34.7	35.15			E-R39FF-4270-B
Round M/F Rod			1220	4'	9.9	10.35			M-R39FF-1220-A
			1525	5'	12.3	12.75			M-R39FF-1525-A
<u>⊚</u> <u>₹</u> □	20	4.0/4.00	1830	6'	14.7	15.15	T20	T20	M-R39FF-1830-A
	39 39 B	39 1 9/16"	2440	8'	21.3	21.75	T38	T38	M-R39FF-2440-A
B B			3050	10'	24.7	25.15			M-R39FF-3050-A
					3660	12'	29.4	29.85	

Counting Sloove	Round D		Length		Approx	' Weight	Thr	ead	Part No.
Coupling Sleeve	mm	inch	mm	inch	kg	lb	Α	В	Part NO.
T D D D D D D D D D D D D D D D D D D D	54	2 1/8"	190	7 1/2"'	1.8	2.25	T38	Т38	C1-FF


Adapter Coupling	Round D		Lei	ngth	Approx	' Weight	Thr	ead	Part No.
Adapter Coupling	mm	inch	mm	inch	kg	lb	A	В	Part No.
T D	54 54	2 1/8" 2 1/8"	190 190	7 1/2" 7 1/2"	1.7 1.7	2.15 2.15	T38 T38	R32 R38	C2-FC C2-FD
A B	63	2 1/2"	215	8 15/32"	3.1	3.55	T38	T45	C2-FG

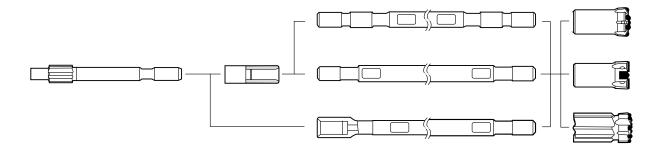
• T45(1-3/4") Series

Bit			ension		В	Buttons*E	Button Di	ia		Gauge	Flus	shing	Ap	prox	
ы	Carbide	0)ia	Ga	uge	Fre	ont	Cei	nter	Buttons	Н	ole	W	eight	Part No.
	Shape	mm	inch	EA	mm	EA	mm	EA	mm	Angle	front	side	kg	lb	
	SP	76	3"	8	11	4	11			35	2		2.3	2.75	B07-076S-A1-1
	ВА	76	3"	8	11	4	11			35	2		2.3	2.75	B07-076B-A1-1
	SP	89	3 1/2"	9	13	6	13			35	2		3.7	4.15	B07-089S-A1-1
Flat Face	ВА	89	3 1/2"	9	13	6	13			35	2		3.7	4.15	B07-089B-A1-1
	PA	76	3"	7	12	4	11			35	3		2.3	2.75	B07-076P-M-1
	SP	89	3 1/2"	9	11	6	10			35	3		3.7	4.15	B07-076S-M-1
	ВА	89	3 1/2"	9	11	6	10			35	3		3.7	4.15	B07-076B-M-1
Flat Face	SP	102	4"	9	12	6	12			35	3		4.8	5.25	B07-102S-M-1
. 1817 935	ВА	102	4"	9	12	6	12			35	3		4.8	5.25	B07-102B-M-1
	SP	102	4"	8	14	5	12			35	4		4.8	5.25	B07-102S-A5-2
	BA	102	4"	8	14	5	12			35	4		4.8	5.25	B07-102B-A5-2
	SP	115	4 1/2"	8	14	7	13			35	4		5.4	5.85	B07-115S-A5-2
Flat Face	ВА	115	4 1/2"	8	14	7	13			35	4		5.4	5.85	B07-115B-A5-2
	PA	76	3"	7	12	3	11	1	11	35	3		2,4	2.85	B07-076P-B4-1
	SP	76	3"	6	11	3	11	1	11	35	3		2.4	2.85	B07-076S-B4-2
	ВА	76	3"	6	11	3	11	1	11	35	3		2.4	2.85	B07-076B-B4-2
Davis Courtes	SP	76	3"	6	12	3	11	1	11	35	3		2.4	2.85	B07-076S-B4-3
Drop Center	ВА	76	3"	6	12	3	11	1	11	35	3		2.4	2.85	B07-076B-B4-3
	SP	89	3 1/2"	8	12	4	11	1	11	35	4		3.4	3.85	B07-089S-B5-02
	ВА	89	31 /2"	8	12	4	11	1	11	35	4		3.4	3.85	B07-089B-B5-02
	5P	102	4"	8	14	4	12	1	12	35	4		4.8	5.25	B07-102S-B5-02
	ВА	102	4"	8	14	4	12	1	12	35	4		4.8	5.25	B07-102B-B5-02
	SP	115	4 1/2"	8	14	4	13	3	13	35	4		6.2	6.65	B07-115S-B5-02
Drop Center	ВА	115	4 1/2"	8	14	4	13	3	13	35	4		6.2	6.65	B07-115B-B5-02
	SP	127	5"	8	14	4	14	3	14	35	4		6.8	7.25	B07-121S-B5-02
	ВА	127	5"	8	14	4	14	3	14	35	4		6.8	7.25	B07-127B-B5-02
	SP	76	3"	8	12	4	12			35	2		2.3	2.75	B07-076S-F1-2
	SP	89	3 1/2"	8	13	5	13			35	2		3.4	3.85	B07-089S-F1-2
Heavy Duty	SP	102	4"	8	14	6	14			35	2		4.5	4.95	B07-102S-F1-2
Tiouvy Duty															

05 Bench Drilling Equipment

• T45(1-3/4") Series

Bit			ension		В	luttons*E	Button Di	ia		Gauge	Flus	shing	Ap	prox	
Dit .	Carbide Shape	D)ia	Ga	uge	Fre	ont	Cei	nter	Buttons	Н	ole	w	eight	Part No.
	Silape	mm	inch	EA	mm	EA	mm	EA	mm	Angle	front	side	kg	lb	
	SP	76	3"	8	11	4	11			35	2		2.8	3.25	B07-076S-01-2
	ВА	76	3"	8	11	4	11			35	2		2.8	3.25	B07-076B-01-2
Retract Flat Face															
	SP	89	3 1/2"	8	11	6	11			35	4	1	5.4	5.85	B07-089S-D5-1
	ВА	89	3 1/2"	8	11	6	11			35	4	1	5.4	5.85	B07-089B-D5-1
	SP	89	3 1/2"	8	12	6	11			35	4	1	5.4	5.85	B07-089S-D5-1
	ВА	89	3 1/2"	8	12	6	11			35	4	1	5.4	5.85	B07-089B-D5-1
	SP	102	4"	8	12	6	11			35	4	1	7	7.45	B07-102S-D5-1
	ВА	102	4"	8	12	6	11			35	4	1	7	7.45	B07-102B-D5-1
Retract Flat Face	SP	102	4"	8	13	6	12			35	4	1	7	7.45	B07-102S-D5-1
	ВА	102	4"	8	13	6	12			35	4	1	7	7.45	B07-102B-D5-1
	SP	115	4 1/2"	8	14	7	13			35	4		8.7	9.15	B07-115S-D5-2
	ВА	115	4 1/2"	8	14	7	13			35	4		8.7	9.15	B07-115B-D5-2
	SP	76	3"	8	11	4	11	1	10	35	4		2.9	3.35	B07-076S-E5-1
	ВА	76	3"	8	11	4	11	1	10	35	4		2.9	3.35	B07-076B-E5-1
	SP	89	3 1/2"	8	11	4	11	2	9	35	4	1	5.3	5.75	B07-089S-E5-1
	ВА	89	3 1/2"	8	11	4	11	2	9	35	4	1	5.3	5.75	B07-089B-E5-1
	SP	89	3 1/2"	8	12	4	11	2	11	35	4	1	5.3	5.75	B07-089S-E5-1
	ВА	89	3 1/2"	8	12	4	11	2	11	35	4	1	5.3	5.75	B07-089B-E5-1
	SP	95	3 3/4"	8	11	4	11	2	10	35	4	1	6	6.45	B07-095S-E5-1
	ВА	95	3 3/4"	8	11	4	11	2	10	35	4	1	6	6.45	B07-095B-E5-1
Retract Drop Center	SP	102	4"	8	12	4	11	2	11	35	4	1	7	7.45	B07-102S-E5-1
Trouder Brop Conter	ВА	102	4"	8	12	4	11	2	11	35	4	1	7	7.45	B07-102B-E5-1
	SP	102	4"	8	13	4	12	2	12	35	4	1	7	7.45	B07-102S-E5-1
	ВА	102	4"	8	13	4	12	2	12	35	4	1	7	7.45	B07-102B-E5-1
	ВА	110	4 5/16"	8	12	4	12	2	12	35	4	1	8	8.45	B07-110B-E5-3
	SP	115	4 1/2"	8	14	4	13	3	13	35	4		8.7	9.15	B07-115S-E5-2
	ВА	115	4 1/2"	8	14	4	13	3	13	35	4		8.7		B07-115B-E5-2


Extension Rod	Round D		Ler	igth	Approx	' Weight	Thr	ead	Part No.
Extension Rou	mm	inch	mm	ft	kg	lb	Α	В	Fait NO.
Round Single Rod									
⊚ ‡□			3050	10'	34	34.45			E-R45GG-3050-A
	45	1 3/4"	3660	12'	41	41.45	T45	T45	E-R45GG-3660-A
A B			4270	14'	48	48.45			E-R45GG-4270-A

Extension Rod	Ro	und D	Ler	ngth	Approx	Weight	Thr	read	Part No.
Extension Rod	mm	inch	mm	ft	kg	lb	Α	В	Part No.
Round Tandem Rod © 1 A B	45	1 3/4"	3050 3660	10' 12'	34 41	34.45 41.45	T45	T45	E-R45GG-3050-B E-R45GG-3660-B
Round M/F Rod ©ID A B	45	1 3/4"	1830 3050 3660 4270	6' 10' 12' 14'	22.6 37 43 50	23.05 37.45 43.45 50.45	T45	T45	M-R45GG-1830-A M-R45GG-3050-A M-R45GG-3660-A M-R45GG-4270-A

Coupling Sleeve	Ro	und D	Ler	ngth	Approx	' Weight	Thi	ead	Part No.
Coupling Sleeve	mm	inch	mm	inch	kg	lb	Α	В	Part No.
A B	63	2 1/2"	210	8 1/4"	2.7	3.15	T45	T45	C1-GG

Adaptor Coupling	Round D		Length		Approx	' Weight	Thr	ead	Part No.	
Adapter Coupling	mm	inch	mm	inch	kg	lb	Α	В	Part No.	
_										
ļ þ	63	2 1/2"	210	8 1/4"	3.1	3.10	T45	R38	C2-GD	
	72	2 7/8"	235	9 1/2"	4	4.45	T45	T51	C2-GH	
A B										

05 Bench Drilling Equipment

▶ T51(2") Series

Bit	0		nsion		В	luttons*E	Button Di	a		Gauge	Flus	shing	Ap	prox	
ы	Carbide Shape	D	ia	Gai	uge	Fre	ont	Cer	nter	Buttons	Н	ole	We	eight	Part No.
	Onape	mm	inch	EA	mm	EA	mm	EA	mm	Angle	front	side	kg	lb	
	SP	89	3 1/2"	9	11	6	10			35	3		3.4	3.85	B08-089S-A1-1
	BA	89	31/2"	9	11	6	10			35	3		3.4	3.85	B08-089B-A1-1
	SP	102	4"	9	12	7	12			35	3		4.4	4.85	B08-102S-A1-1
Flat Face	ВА	102	4"	9	12	7	12			35	3		4.4	4.85	B08-102B-A1-1
	SP	102	4"	8	14	5	12			35	4		4.5	4.95	B08-102S-A5-2
	ВА	102	4"	8	14	5	12			35	4		4.5	4.95	B08-102B-A5-2
	SP	115	4 1/2"	8	14	7	13			35	4		5.3	5.75	B08-115S-A5-2
	ВА	115	4 1/2"	8	14	7	13			35	4		5.3	5.75	B08-115B-A5-2
Flat Face	SP	127	5"	8	14	7	14			35	4		6.1	6.55	B08-127S-A5-2
	ВА	127	5"	8	14	7	14			35	4		6.1		B08-127B-A5-2
	SP	89	3 1/2"	8	12	4	11	1	11	35	4		3.3	3.75	B08-089S-D5-2
	BA	89	3 1/2"	8	12	4	11	1	11	35	4		3.3	3.75	B08-089B-D5-2
	SP	89	3 1/2"	8	13	4	11	1	11	35	4		3.3	3.75	B08-089S-D5-2
	BA	89	3 1/2"	8	13	4	11	1	11	35	4		3.3	3.75	B08-089S-D5-2
	SP	102	4"	8	14	4	12	1	12	35	4		4.7	5.15	B08-102S-D5-2
	BA	102	4"	8	14	4	12	1	12	35	4		4.7	5.15	B08-102B-D5-2
	SP	102	4"	8	14	4	14	1	14	35	4		4.8	5.25	B08-102S-D5-2
Drop Center	BA	102	4"	8	14	4	14	1	14	35	4		4.8	5.25	B08-102B-D5-2
	SP	115	4 1/2"	8	14	4	13	3	13	35	4		5.7	6.15	B08-115S-D5-2
	BA	115	4 1/2"	8	14	4	13	3	13	35	4		5.7	6.15	B08-115B-D5-2
	SP	127	5"	8	14	4	13	3	14	35	4		6.7	7.15	B08-127S-D5-2
	BA	127	5"	8	14	4	13	3	14	35	4		6.7	7.15	B08-127B-D5-2
	SP	89	3 1/2"	8	13	5	13			35	2		3.2	3.65	B08-089S-F1-2
	SP	102	4"	8	14	6	14			35	2		4.7	5.15	B08-102S-F1-2
	SP	115	4 1/2"	8	14	6	14			35	2		6	6.45	B08-115S-F1-2
Heavy Duty	SP	127	5"	8	14	7	14			35	2		6.3	6.75	B08-127S-F1-2

▶ T51(2") Series

Bit		Dime	nsion		В	uttons*E	Button Di	a		Gauge	Flus	shing	Ap	prox	
Dit	Carbide Shape	D	ia	Ga	uge	Fre	ont	Cei	nter	Buttons	Н	ole	W	eight	Part No.
	Silape	mm	inch	EA	mm	EA	mm	EA	mm	Angle	front	side	kg	lb	
	SP	89	3 1/2"	8	11	6	11			35	4	1	5.2	5.65	B08-089S-D5-1
	ВА	89	3 1/2"	8	11	6	11			35	4	1	5.2	5.65	B08-089B-D5-1
	SP	89	3 1/2"	8	12	6	11			35	4	1	5.2	5.65	B08-089S-D5-1
	ВА	89	3 1/2"	8	12	6	11			35	4	1	5.2	5.65	B08-089B-D5-1
Retract Flat Face	SP	102	4"	8	12	6	11			35	4	1	6.9	7.35	B08-102S-D5-1
	ВА	102	4"	8	12	6	11			35	4	1	6.9	7.35	B08-102B-D5-1
	SP	102	4"	8	13	6	12			35	4	1	6.9	7.35	B08-102S-D5-1
	ВА	102	4"	8	13	6	12			35	4	1	6.9	7.35	B08-102B-D5-1
	SP	115	4 1/2"	8	14	7	12			35	4		8.3	8.75	B08-115S-D5-2
	ВА	115	4 1/2"	8	14	7	12			35	4		8.3	8.75	B08-115B-D5-2
	SP	127	5"	8	14	7	14			35	4		10.1	10.55	B08-127S-D5-2
	BA	127	5"	8	14	7	14			35	4		10.1	10.55	B08-127B-D5-2
	SP	89	3"	8	11	4	11	2	9	35	4	1	5.2	5.65	B08-089S-E5-2
	ВА	89	3"	8	11	4	11	2	9	35	4	1	5.2	5.65	B08-089B-E5-2
	SP	89	3 1/2"	8	12	4	11	2	11	35	4	1	5.2	5.65	B08-089S-E5-2
	ВА	89	3 1/2"	8	12	4	11	2	11	35	4	1	5.2	5.65	B08-089B-E5-2
	SP	102	3 1/2"	8	12	4	11	2	11	35	4	1	6.9	7.35	B08-102S-E5-2
Retract Drop Center	ВА	102	3 1/2"	8	12	4	11	2	11	35	4	1	6.9	7.35	B08-102B-E5-2
	SP	102	3 3/4"	8	13	4	11	2	11	35	4	1	6.9	7.35	B08-102S-E5-2
	ВА	102	3 3/4"	8	13	4	11	2	11	35	4	1	6.9	7.35	B08-102B-E5-2
	SP	115	4 1/2"	8	14	4	13	3	13	35	4		8.2	8.65	B08-115S-E5-2
	ВА	115	4 1/2"	8	14	4	13	3	13	35	4		8.2	8.65	B08-115B-E5-2
	SP	127	5"	8	14	4	14	3	14	35	4		10	10.45	B08-127S-E5-2
	ВА	127	5"	8	14	4	14	3	14	35	4		10	10.45	B08-127B-E5-2

05 Bench Drilling Equipment

▶ T51(2") Series

Extension Rod	Round D		Length		Approx' Weight		Thread		Part No.	
Extension Rod	mm	inch	mm	ft	kg	lb	Α	В	Part NO.	
Round Single Rod										
⊚ ‡□			3660	12'	50	50.45			E-R51HH-3660-A	
	51	2"	4270	14'	61	61.45	T51	T51	E-R51HH-4270-A	
A B			6100	20'	87	87.45			E-R51HH-6100-A	
Ţ ·										

Extension Rod	Ro	und D	Ler	gth	Approx	' Weight	Thr	ead	Part No.	
Extension Rou	mm	inch	mm	ft	kg	lb	Α	В	Fait No.	
Round Tandem Rod										
<u>⊚</u> <u>Ī</u> □	51	2"	3660	12'	49.5	49.95	T51	T51	E-R51HH-3660-B	
			4270	14'	59	59.45			E-R51HH-4270-B	
A B										
Round M/F Rod										
<u></u>	51	2"	3660	12'	53	53.45	T51	T51	M-R51HH-3660-A	
			4270	14'	61.6	62.05			M-R51HH-4270-A	
A B										

Coupling Sloave	Round D		Ler	ngth	Approx	' Weight	Thr	ead	Part No.
Coupling Sleeve	mm	inch	mm	inch	kg	lb	Α	В	Part No.
A B	76	3"	228	9"	4.1	4.55	T51	T51	C1-HH

Index

Drifter	Rock Drill	S.N	Drifter	Rock Drill	S.N
	BBC51/52/54/120	A 01		JET7	F 06
	BBE56U2/BBE57	A 02	JUNJIN	JET9	F 14
	COP125/130/131	A 03		KDH100(4Spline)	K 01
	COP1032HD	A 04	KOMATSU	KDH100(8Spline)	K 02
	COP1036HB/1038HB/1238LE/1238ME		KLEMM	4026/4053	K 03
	COP1038H/1238ME	A 05		HB103	K 04
ATLAS	COP1038HL/1238ME	A 06	KRUPP	HB30A/40A	K 05
	COP1338MEX	A 07		HB30A/40A	K 06
	COP1440/1838	A 08		HC40	M 01
	COP1550/1838ME	A 09		H40/50/60/70	A 01
	COP1550, 1838HO/ME/HE	A 10		HC80	M 02
	COP1840EX, 1850	A 11		H100	A 02
	Atlas Copco 4050	A 12		HC120	M 03
	HD125/150/HE125/150	B 01	MONTABERT	HC80RP	M 04
BOART	HD155	B 02		HC120R	M 05
	HS432S	B 03		HC120/HC150	M 06
BÖHLER	HS448	B 04		HC80R/HC120R/HC150R	M 07
	HS464	B 05		HC80R/HC120R/HC150R	M 08
DNS	DNT3	D 01	†	HC200R	M 09
	HD75	F 01		RPH400/600, DCH400/600	M 10
	HD90	F 02	1	DCH400/600	D 01
	HD180	F 03	MITSU	RPH200/HYDRASTAR 200/300	M 11
	HD200	F 04		TR300/350A/400	F 18
	HD300	F 05	MITSUBHISHI	MCD6G	M 12
	HD500	D 01	010	HBM100	S 01
	HD609	F 06	SIG	HBM150	S 02
	HD609RP	F 07	SECOMA	HYDRASTAR200	S 03
	HD612	F 08		SP3	D 01
FURUKAWA	HD612RP	F 09	SOOSAN	SP3G	F 06
	HD612QED	F 10		SP6	F 08
	HD615	F 11		HL300	T 01
	HD709	F 12		HL500/500S	T 02
	HD709RP	F 13		HL500-38/510-38	T 03
	HD712	F 14		HL500-45/510-45	T 04
	HD712RP	F 15		HL500S-38/510B/510LH	T 05
	HD715	F 16		HL550SUPER	T 06
	HD715RP	F 17		HL550S/560S	T 07
	PD200/M120	F 18		HL600-45	T 08
	PR66	G 01		HL600-52	T 09
0.1.00.1150	HPR1H	G 02		HL600S-45	T 10
GARDNER	HPR 2H	G 03	TAMROCK	HL645/645S	T 11
DENVER	PR123VS	F 18		HL700-45	T 12
	PR133	G 04		HL700-52	T 13
	LM400	A 02		HL844	J 02
	YH50/55	I 01		HL850	T 14
	YH50RP/55RP	102		HL1000/1000S	T 15
	YH60/60A	A 02		HL1000-52	T 16
	LM500/YH65/70S/80	103		HL1500	T 17
	YH65RP/70RP/80RP	104		HL1500-60	T 18
I.R	YH95/YH100	105		HLX5	T 19
	YH95RP/YH 100RP	106		HLR438L/438T, L550S(SF)	S 01
	YH110V/YH135V	107		TR300	F 18
	YD90M/100M	108	TEISAKU	TRH200	108
	YD130M/135/145	F 18		TH500/501/501S/550	T 20
	URD475/550V/120/VL140/EVL130	F 18	4//-//	TH800/900	T 21
JOY	VCR361	J 01	тоуо	TH900(L)	T 22
001	VCR260/360	J 02		TYPR120/220	F 18

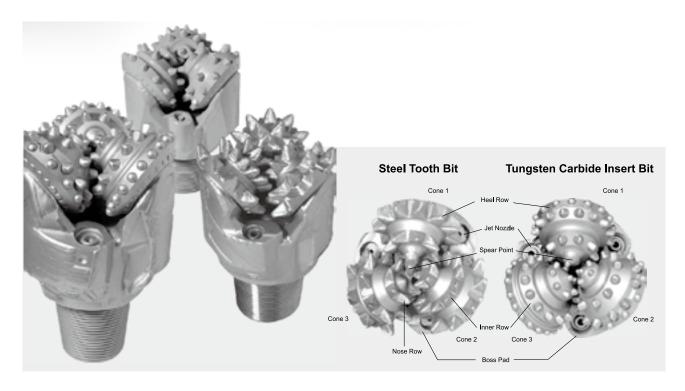
S.N	Drifter	Rock Drill	Thread	Flushing Tube Dia	Length	Approx Weight	Part No.
A01	$ \begin{array}{c c} & & \downarrow \\ & \downarrow$	ATLAS BBC51/52/54/120 MONTABERT H40/50/60/70	R32 R38 T38	10 10 10	380 390 390	2.7 3.1 3.1	SA01-C380-T SA01-D390-T SA01-F390-T
A02	\$\varphi\$644\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ATLAS BBE56U2/BBE57 I.R(YAMAMOTO)YH60/60A MONTABERT H100 I.R LM400	T38 R38 T45	14 14 14	530 447 550	5.5 4.8 5.8	SA02-F530-T SA02-D447-T SA02-G550-T
A03	$ \begin{array}{c c} & \downarrow & \downarrow \\ $	ATLAS COP125/130/131	R32 T38	14 14	380 380	2.7 3.0	SA03-C380-T SA03-F380-T
A04	\$\psi_5^2 \overline{\psi_5^4 \overline{\psi_5^4 \overline{\psi_5^8 \overline{\p	ATLAS COP1032HD	R32	SF	340	3.5	SA04-C340-S
A05		ATLAS COP1036HB/1038HB /1238LE/1238ME	R32 T38 T38 T45 T45 T38	SF SF SF SF SF	500 500 590 500 590 575	4.1 4.3 5.0 5.1 6.3 5.5	SA06-C500-S SA06-F500-S SA06-F590-S SA06-G500-S SA06-G590-S SA06-F575-S
	\$\frac{1}{\phi_0^{\phi \delta}} \frac{1}{\phi_0^{\phi \delta}}} \frac{1}{\phi_0^{\phi \delta}} \frac{1}{\phi_0^{\phi \delta}} \frac{1}{\phi_0^{\phi \delta}} \frac{1}{\phi_0^{\phi \delta}} \frac{1}{\phi_0^{\phi \delta}} \frac{1}{\phi_0^{\phi \delta}}} \frac{1}{\phi_0^{\phi \delta}} \frac{1}{\phi_0^{\phi \delta}}} \frac{1}{\phi_0^{\phi \delta}}} \frac{1}{\phi_0^{\phi \delta}}} \frac{1}{\phi_0^{\phi \de	ATLAS COP1038H/1238ME	R38 T38	SF SF	485 485	4.3 4.3	SA06-D485-S SA06-F485-S
A06	\$\frac{1}{\phi_{\phi}}}\$\frac{1}{\phi_{\phi}}\$\frac{1}{\phi_{\phi}}\$\frac{1}{\phi_{\phi	ATLAS COP1038HL/1238ME	R32 T38	SF SF	575 575	4.0 4.9	SA07-C575-S SA07-F575-S
A07	↓ 122 ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	ATLAS COP 1338MEX	T45	SF	780	10.5	SA08-G780-T
A08	\$\frac{1}{\phi} \frac{1}{\phi} \frac	ATLAS COP 1440/1838	T38 R38 R32	SF SF SF	435 435 525	4.4 4.4 5.3	SA09-F435-S SA09-D435-S SA09-C525-S
A09	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ATLAS COP1550/1838ME	T38 T45 T51	SF SF SF	525 525 525	5.8 5.8 6.2	SA10-F525-S SA10-G525-S SA10-H525-S
A10	₹°\$±\$54 → +8.8	ATLAS COP1550, 1838HO/ME/HE	R32 T38 T45 T51	SF SF SF	525 525 525 525	5.7 6.1 6.2 6.8	SA11-C525-S SA11-F525-S SA11-G525-S SA11-H525-S

S.N	Drifter	Rock Drill	Thread	Flushing Tube Dia	Length	Approx Weight	Part No.
A11	\$\frac{\phi}{\phi}\fra	ATLAS COP1840EX. 1850	T45 T51	SF SF	565 565	6.9 7.1	SA12-G565-S SA12-H565-S
A12	1 d f 2 d	ATLAS 4050	T51	SF	605	10.5	SA13-H605-S
B01	14.8 14.8 14.8 10.0	BOART HD125/150/ HE125/150	R32	SF	428	4.0	SB01-C428-S
B02	15.7 - - - - - - - - - -	BOAR THD155	R32	SF	580	8.6	SB02-C580-S
В03	\$\frac{1}{3}\psi 49.9 \qquad \frac{1}{25+} \qquad \frac{1}{4}\phi 34.9 \qquad \frac{1}{25+} \qquad \frac{1}{4}\phi 34.9	BÖHLER HS432S	R38 T38 R32	SF SF SF	440 440 475	3.2 3.2 3.3	SB03-D440-S SB03-F440-S SB03-C475-S
B04	- φ38 φ40 + +9 1 65 1	BÖHLER HS448	R32 R38 T38	SF SF SF	500 500 500	4.1 4.3 4.3	SB04-C500-S SB04-D500-S SB04-F500-S
B05	€ \$\frac{1}{2}\phi \ \frac{1}{2}\phi \fra	BÖHLER HS464	T38 T45	SF SF	625 625	11.6 11.5	SB-05-F625-S SB-05-G625-S
D01	\$\frac{1}{\phi}\phi \frac{1}{\phi}\phi \frac{1}{\phi}\phi}\phi \frac{1}{\phi}\phi \frac{1}{\phi}\phi \frac{1}{\phi}\phi \frac{1}{\phi}\phi	DNS DNT3 FURUKAWA HD500 MITSUI DCH400/600 SOOSAN SP3	R38 T38 T38 T45 T45 T51 T45	16 16 16 16 16 16	635 620 635 620 635 635 640	8.0 8.0 8.0 8.3 8.8 8.3	SD01-D635-T SD01-F620-T SD01-F635-T SD01-G620-T SD01-G635-T SD01-H635-T SD01-G640-T
F01	φ40 31.7 1 φ40 10.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FURUKAWA HD75	R32 R38	SF SF	425 425	3.3 3.5	SF01-C425-S SF01-D425-S
F02	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FURUKAWA HD90	R32 R38	SF SF	515 515	4.0 4.3	SF02-C515-S SF02-D515-S
F03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FURUKAWA HD180	T38	14	565	5.0	SF03-F565-T

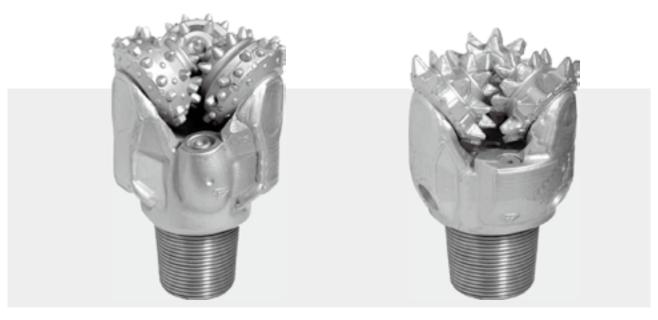
S.N	Drifter	Rock Drill	Thread	Flushing Tube Dia	Length	Approx Weight	Part No.
F04	\$\frac{1}{\phi \text{61.4}} \frac{1}{\phi	FURUKAWA HD200	R38 T38	14 14	550 550	5.8 5.8	SF04-D550- T SF04-F550- T
F05	φ64.4 φ45 φ44.5 • φ64.4 φ45 φ45 φ41 • φ64.4 φ45 φ45 φ45 • φ64.4 φ45 φ45 φ41 • φ64.4 φ45 φ45 φ45 • φ64.4 φ45 φ45 φ45 • φ64.4 φ45 φ45 • φ64.4 φ45 φ45 • φ64.4 φ45 φ45 • φ64.4 φ45	FURUKAWA HD300	T38 T45 T45	16 16 SF	655 655 786	6.1 6.5 8.4	F05-F655-T F05-G655-T F05-G786-S
F06	→ 0 45 0 36 0 45 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FURUKAWA HD609 JUNJIN JET7 SOOSAN SP3G	T38 T45 T38 T45	SF SF SF	620 620 690 690	5.7 5.7 6.4 7.1	SF06-F620-S SF06-G620-S SF06-F690-S
F07	\$\frac{1}{\phi}\$\$\frac{1}{\phi	FURUKAWA HD609RP	T38 T45	SF SF	795 795	6.5 6.5	SF07-F795-S SF07-G795-S
F08	φ44 φ51 • φ42 φ13 • μ130	FURUKAWA HD612 SOOSA NSP6	T38 T45 T45	SF SF SF	710 720 700	9.0 9.2 9.1	SF08-F710-S SF08-G720-S SF08-G700-S
F09	\$\frac{\phi}{\phi} \frac{\phi \phi}{\phi} \frac{\phi \phi \phi}{\phi} \frac{\phi \phi}{\phi} \frac{\phi}{\phi} \fr	FURUKAWA HD612RP	T38 T45 T51	SF SF SF	845 845 845	10.6 11.0 11.4	SF09-F845-S SF09-G845-S SF09-H845-S
F10	φ51 - φ42 +12 † 133, †	FURUKAWA HD612QED	T45 T51	SF SF	845 845	10.8 11	SF10-G845-S SF10-H845-S
F11	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	FURUKAWA HD615	T45 T51 T51	SF SF SF	700 700 876	11 11.7 14.0	SF11-G700-S SF11-H700-S SF11-H876-S
F12	\$\frac{1}{2}\frac{1}{2	FURUKAWA HD709	T38	SF	620	6.5	SF13-F620-S
F13		FURUKAWA HD709RP	T38	SF	814	9.1	SF14-F814-S
F14	\$\frac{1}{2}\frac{1}{2}72\left[\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2	FURUKAWA HD712 JUNJIN JET9	T45 T45 T51	SF SF SF	592 790 790	8.4 9.9 10.8	SF15-G592-S SF15-G790-S SF15-H790-S

S.N	Drifter	Rock Drill	Thread	Flushing Tube Dia	Length	Approx Weight	Part No.
F15	↓ 13→ <u>→ 164</u> € \$\frac{\phi}{2}\$ \$\frac{\phi}{\phi}\$ \$\ph	FURUKAWA HD712RP	T45 T45 T51	SF SF SF	787 885 885	11.9 12.7 13.4	SF16-G787-S SF16-G885-S SF16-H885-S
F16	←	FURUKAWA HD715	T51	SF	790	12.7	SF17-H790-S
F17	13+ ±164 - \$\phi 58 \phi 56 1	FURUKAWA HD715RP	T51	SF	885	16.2	SF18-H885-S
F18	Φ44.3 Φ 455.5 ↓ 65 ↓ 97 ↓ 18	FURUKAWA PD200/M120 MITUSI TR300/350A/400 TOYO TYPR120/220 TAMROCK L600/750 YAMAMOTO YD 130M/135/145 TEISAKU TR300 G.D. PR123VS I.R URD475/550/ V120/VL140/EVL130	R32 R38 T38 T38 T45	14 14 14 14 14	355 355 380 446 446	4.0 4.0 4.3 5.0 5.0	SF19-C355-T SF19-D355-T SF19-F380-T SF19-F446-T SF19-G446-T
G01	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	G.D PR66	T38 T45	16 16	711 711	6.2 6.5	SG01-F711-T SG01-G711-T
G02	\$\frac{1}{\phi}666	G.D HPR1H	R38 T38 T45	SF SF SF	725 725 725	7.9 7.9 8.2	SG02-D725-S SG02-F725-S SG02-G725-S
G03	\$\frac{1}{\sqrt{763}} \rightarrow \frac{1}{\sqrt{763}} \rightarrow \frac{1}{\sqrt{763}} \rightarrow \frac{1}{\sqrt{763}} \rightarrow \frac{1}{\sqrt{701.6}} \rightarrow \frac{1}{\sqrt{101.6}}	G.D HPR2H	T45 T51	SF SF	915 915	13.5 13.8	SG03-G915-S SG03-H915-S
G04	φ44.3 φ44.3 1 60,5 97 1 60,5 97	G.D. PR133 FURUKAWA M120 I.R VL140	T38 T45	16 16	446 446	4.5 4.8	SG04-F446-T SG04-G446-T
I 01	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I.R YH50/55	R38 T38 T38 R38	16 16 16 SF SF	440 440 450 517 517	3.7 3.7 3.8 5.1 5.1	SI01-D440-T SI01-F440-T SI01-F450-T SI01-D517-T SI01-F517-T
I 02	φ 38 φ 58 1φ 40 ψ 40 ψ 40	I.R YH50RP/55RP	Т38	16	540	4.3	SI02-F540-T

S.N	Drifter	Rock Drill	Thread	Flushing Tube Dia	Length	Approx Weight	Part No.
103	\$\frac{1}{2}\phi 64.4 \qquad \phi 45 \qquad \qqquad \qqqqq \qqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqq \qqqqq \qqqqqq	I.R LM500/YH65/70S/80	T38 T38 T45 T45 T45 T45 T45	19 19 19 19 19	705 480 705 480 500 600	7.8 5.0 7.8 5.0 5.4 6.8	SI03-F705-T SI03-F480-T SI03-G705-T SI03-G480-T SI03-G500-T SI03-G600-T
I 04	\$\frac{1}{\phi}\phi_665\$\$\frac{1}{\phi}\phi_45\$\$\frac{1}{\phi}\phi_46\$\$\frac{1}{\phi}\phi_45\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_50\phi_50\$\$\frac{1}{\phi}\phi_	I.R YH65RP/70RP/80RP	T38 T45	19 19	700 700	7.6 7.9	SI04-F700-T SI04-G700-T
I 05	φ ₇₄ φ ₅₁ φ ₅₃	I.R YH95/YH100	T45 T51	19 19	625 625	7.4 8.3	SI05-G625-T SI05-H625-T
1 06	◆ \$\phi_{\phi_{135}} \rightarrow \frac{1}{120} \rightarrow \frac{1}{1	I.R YH95RP/YH 100RP	T45 T51	19 16	840 840	10.5 10.9	SI06-G840-T SI06-H840-T
I 07	\$\frac{1}{\phi} \text{D=} \qua	I.R. YH110V/YH135V	T45 T51	SF SF	728 728	11.4 11.7	SI07-G728-S SI07-H728-S
108	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I.R YD90M/I00M TEISAKU TRH200	R32 T38 R32 R38	11 11 SF SF	330 330 480 480	2.4 2.6 3.4 3.7	SI08-C330-T SI08-F330-T S08-C480-S S08-D480-S
J 01	\$\displaystyle{\phi} \displaystyle{\phi} \disp	JOY VCR361	T38 T45	19 19	440 440	5.0 5.1	SJ01-F440-T SJ01-G440-T
J 02	ξ 5 φ 60.5	JOY 260/360 TAMROCK HL844	R38 T38 T45	16 16 16	450 450 450	4.4 4.2 4.4	SJ02-D450-T SJ02-F450-T SJ02-G450-T
K01	$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	KOMATSU KDH100(4Spline)	T38	14	455	3.5	SK01-F455-T
K02	\$\frac{\phi}{\phi}\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi	KOMATSU KDH100(8Spline)	T38 T45	14 14	460 530	3.6 4.1	SK01-F460-T SK01-G530-T


S.N	Drifter	Rock Drill	Thread	Flushing Tube Dia	Length	Approx Weight	Part No.
K03	$ \begin{array}{c c} & & \downarrow \\ & \downarrow $	KLEMM 4026/4053	R55LI A55RE	SF SF	500 500	10.5 10.5	SK03-J500-N SK03-K500-N
K04		KRUPP HB103	R55 LI A55RE	SF SF	500 500	9.4 9.4	SK04-J500-N SK04-K500-N
K05	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	KRUPP HB30A/40A	R55LI A55RE	SF SF	580 580	12.0 12.0	SK05-J580-N SK05-K580-N
K06	\$\frac{1}{\phi}\	KRUPP HB30A/40A	C64LI	SF	580	13.3	SK06-L580-N
M01	φ38 • φ52.7 • 8.4 φ38 • φ52.7	MONTABERT HC40	R32 R38 T38	SF SF SF	366 372 447	3.5 3.5 3.6	SM01-C366-S SM01-D372-S SM01-F447-S
M02	\$\frac{1}{\phi_{\frac{1}{2}}}	MONTABERT HC80	R32 R38 T38 T38	SF SF SF	500 440 500 440	4.1 4.4 4.1 3.7	SM02-C500-S SM02-D440-S SM02-F500-S SM02-F440-S
M03	\$\frac{1}{\phi_{59.7}} \frac{1}{\phi_{45}} \frac{1}{\phi_{59.7}} \	MONTABERT HC120	T38 T45	SF SF	490 490	5.4 5.6	SM03-F490-S SM03-G490-S
M04	φ59.8 102	MONTABERT HC80RP	T45	SF	670	7.5	SM04-G670-S
M05	\$\phi_{\frac{\phi_{\phi}}{\phi_{\phi}}} \\ \phi_{\phi_{\phi}} \\ \phi_{\phi_{\phi_{\phi}}} \\ \phi_{\phi_{\phi}} \\ \phi_{\phi_{\phi_{\phi}}} \\ \phi_{\phi_{\phi}} \\ \phi_{\phi_{\phi_{\phi}}} \\ \phi_{\phi_{\phi}} \\ \ph_{\phi_{\phi_{\phi_{\phi_{\phi}}}} \\ \phi_{\phi_{\phi_{\phi}}} \	MONTABERT HC120R	T45	SF	670	9.7	SM05-G670-S
M06	φ59.6 • φ45 • 9.4	MONTABERT HC120/HC150	T38 T45	SF SF	490 490	5.3 5.6	SM06-F490-S SM06-G490-S
M07	\$\frac{1}{\phi_{\phi_{\phi}}\phi_{\phi}}\phi_{\p	MONTABERT HC80R/ HC120R/HC150R	T45 T45	SF SF	670 771	7.3 8.0	SM07-G670-S SM07-G771-S

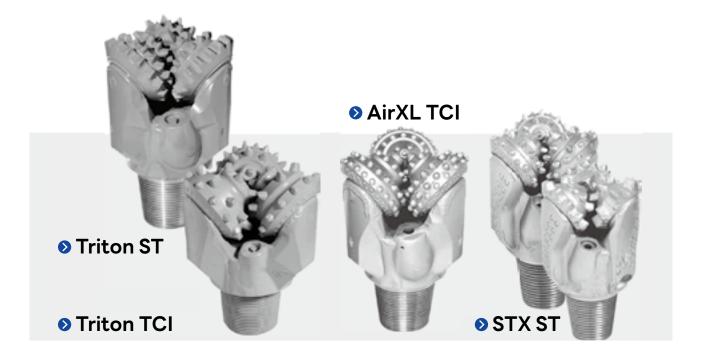
S.N	Drifter	Rock Drill	Thread	Flushing Tube Dia	Length	Approx Weight	Part No.
M08	\$\frac{\phi_{\phi}}{\phi_{\phi}} \frac{\phi_{\phi}}{\phi_{\phi}} \frac{\phi_{\phi}}{\phi_{\phi	MONTABERT HC80R/ HC120R/HC150R	T45 T51 T45 T51	SF SF SF SF	670 670 771 771	9.0 9.2 9.7 10.2	SM08-G670-S SM08-H670-S SM08-H771-S
M09		MONTABERT HC200R	T51	SF	840	13.5	SM09-H840-S
M10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MITSU RPH400/600 DCH400/600	T38 T38 T45 T38	14 14 14 14	450 520 470 610	8.0 9.2 5.7 11.0	SM10-F450-T SM10-F520-T SM10-G470-T SM10-F610-T
M11	\$\frac{1}{2}\psi_{54} \frac{1}{2}\psi_{54} \frac{1}	MITSU RPH200/ HYDRASTAR 200/300	R38	SF	467	4.1	SM11-D467-S
M12	Φ 45 • ↓ Φ 46 • (-7.8)	MITSUBISHI MCD6G	T38	SF	470	5.4	SM12-F470-S
S01	Φ 457	SIG HBM100 TAMROCK HLR438L/438T, L550S(SF)	R32 R38	12.7 12.7	380 380	2.7 3.2	ST01-C380-T ST01-D380-T
S02	500 500	SIGBM150	R32 T38	SF SF	500 500	3.9 4.2	SM02-C500-S SM02-F500-S
S03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SECOMA HYDRASTAR200	R32	SF	351	3.6	SM03-C351-S
T01	\$\frac{1}{2}\frac{1}{2	TAMRACK HL300	R32	SF	400	2.6	ST01-C400-S
T02	\$\frac{1}{\sqrt{\frac{1}{\sqt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\frac{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\frac{1}{\fint}}}}}}}{\sintitex}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	TAMROCK HL500/500S	R32 T38 T38 R38 T45	SF SF SF SF	550 550 480 460 550	4.1 4.6 4.1 3.9 4.5	ST02-C550-S ST02-F550-S ST02-F480-S ST02-D460-S ST02-G550-S
Т03	\$\frac{10}{\phi} \frac{10}{\phi} \frac{10}{\ph	TAMROCK HL500-38/510-38	R32 R38 T38	SF SF SF	550 550 550	4.3 4.5 4.6	ST03-C550-S ST03-D550-S ST03-F550-S


S.N	Drifter	Rock Drill	Thread	Flushing Tube Dia	Length	Approx Weight	Part No.
Т04	\$\frac{1}{2}\frac{1}{2	TAMROCK HL500-45/510-45	T38 T45	SF SF	550 550	5.4 5.6	ST04-F550-S ST04-G550-S
Т05	\$\frac{1}{\phi}\$\$ \$\frac{1}{\	TAMROCK HL500 S-38/510B/510LH	R32 R38 T38	SF SF SF	450 450 450	3.8 4.0 4.0	ST05-C450-S ST05-D450-S ST05-F450-S
Т06	\$\frac{1}{2}\displays{2}\disp	TAMROCK HL550SUPER	R38 T38	SF SF	505 505	4.3 4.3	ST06-D505-S ST06-F505-S
Т07	\$\frac{10}{\phi}\$\$	TAMROCK HL550S/560S	R38 T38	SF SF	500 500	5.4 5.4	ST07-D500-S ST07-F500-S
Т08	₹ \$\frac{1}{4}\$	TAMROCK HL600-45	R38 T38 T45	SF SF SF	600 600 600	6.1 6.1 6.3	ST09-D600-S ST09-F600-S ST09-G600-S
Т09	\$\frac{1}{\phi}\$\$\frac{1}{\phi}\$\$\frac{1}{\phi}\$\$\frac{1}{\phi}\$\$\$\frac{1}{\phi}\$\$\frac{1}{\phi}\$\$\frac{1}{\phi}\$\$\$\frac{1}{\phi}\$\$\frac{1}{\phi}\$\$\frac{1}{\phi}\$\$\frac{1}{\phi	TAMROCK HL600-52	T51 T51	SF SF	650 710	8.3 8.9	ST10-H650-S ST10-H710-S
T10	φ 39.8 φ 44.9 75	TAMROCK HL600 S-45	T38	SF	525	5.7	ST11-F525-S
T11	€ \$\frac{1}{4}\$	TAMROCK HL645/645S	R32 R32 T38 T38 T45	SF SF SF SF	600 525 600 525 600	6.3 5.5 6.6 5.8 6.9	ST12-C600-S ST12-C525-S ST12-F600-S ST12-F525-S ST12-G600-S
T12	φ689 φ44.8 • φ55 φ55 φ55 φ55 φ55 φ55 φ55 φ55 φ55 φ	TAMROC KHL700-45	T38 T45	SF SF	600 600	7.1 7.3	ST14-F600-S ST14-G600-S
T13	\$\frac{1}{\phi}\$\$\frac{1}{\phi	TAMROCK HL700-52	T45 T51	SF SF	600 600	8.4 8.4	ST15-G600-S ST15-H600-S

07 TRICONE Drill Bits

PLATINUM | Classic | Standard

08 Platinum Tricone Drill Bits


Vanguard TCI

Vanguard ST

09 Classic Tricone Drill Bits

10 Standard Tricone Drill Bits

22

23

24

26

28

22 3/8

23 1/2

558.8

568.3

584.2

569.9

609.6

660.4

711.2

762.0

7 5/8

7 5/8

7 5/8

7 5/8

7 5/8

7 5/8

8 5/8

8 5/8

1185

1190

1195

1287

1195

1425

1490

1490

537.5

539.8

542.0

585.0

542.0

646.4

676.0

676.0

11 Size and Weight •TCI ST

ungst	en Car	bide Pr	oduct L	.ine	Steel Tooth Product Line					
Bit Size		it Size API Approx		ate Weight	Bit S	Size	API	Approximate Weight		
inch	mm	Pin	lb	kg	inch	mm	Pin	lb	kg	
3 3/4	95.3	2 3/8	14	6.4	3 5/8	92.1	2 3/8	12	5.4	
3 7/8	98.4	2 3/8	14	6.4	3 3/4	95.2	2 3/8	12	5.4	
4 1/8	104.8	2 3/8	16	7.3	3 7/8	98.4	2 3/8	12	5.4	
4 1/2	114.3	2 3/8	20	9.0	4 1/8	104.8	2 3/8	14	6.4	
4 5/8	117.5	2 7/8	20	9.0	4 1/2	114.3	2 3/8	18	8.2	
4 3/4	120.3	2 7/8	22	10.0	4 5/8	117.5	2 7/8	18	8.2	
4 7/8	123.8	2 7/8	22	10.0	4 3/4	120,6	2 7/8	20	9.1	
5	127.0	2 7/8	21	9.5	4 7/8	123.8	2 7/8	22	10.0	
5 1/4	133.4	2 7/8	25	11.4	5	127.0	2 7/8	25	11.3	
5 1/2	139.7	3 1/2	29	13.2	5 5/8	142.9	3 1/2	29	13.2	
5 5/8	142.9	3 1/2	29	13.2	5 3/4	146.1	3 1/2	37	16.8	
5 3/4	146.1	3 1/2	35	15.9	5 7/8	149.2	3 1/2	37	16.8	
5 7/8	149.2	3 1/2	39	17.7	6	152.4	3 1/2	38	17.3	
		3 1/2	40	18.1	6 1/8	155.6	3 1/2	38	17.3	
6 6 1/8	152.4 155.6	3 1/2	40	18.1	6 1/4	158.7	3 1/2	39	17.8	
					6 1/2	165.1	3 1/2	44	20.0	
6 1/4	158.8	3 1/2	41	18.6						
6 1/2	165.1	3 1/2	48	21.8	6 5/8	168.3	3 1/2	45	20.4	
6 5/8	168.3	3 1/2	49	22.2	6 3/4	171.4	3 1/2	46	21.0	
6 3/4	171.4	3 1/2	50	22.7	7 5/8	193.7	4 1/2	69	31.3	
7 1/2	190.5	4 1/2	76	34.5	7 7/8	200.0	4 1/2	73	33.1	
7 5/8	193.7	4 1/2	78	35.4	8 3/8	212.7	4 1/2	88	40.0	
7 7/8	200.0	4 1/2	80	36.3	8 1/2	215.9	4 1/2	90	40.9	
8 1/4	209.6	4 1/2	90	40.8	8 3/4	222.2	4 1/2	92	41.7	
8 3/8	212.7	4 1/2	92	41.7	9 1/2	241.3	6 5/8	140	63.5	
8 1/2	215.9	4 1/2	94	42.6	9 5/8	244.5	6 5/8	142	64.4	
8 5/8	219.1	4 1/2	95	43.1	9 7/8	250.8	6 5/8	145	65.8	
8 3/4	222.2	4 1/2	96	43.5	10 5/8	269.9	6 5/8	168	76.2	
8 7/8	225.4	4 1/2	96	43.5	11	279.4	6 5/8	175	79.4	
9	228.6	4 1/2	110	49.9	12 1/4	311.1	6 5/8	225	102.0	
9 1/4	235.0	6 5/8	125	56.7	13 1/2	342.9	6 5/8	255	115.7	
9 1/2	241.3	6 5/8	145	65.8	13 3/4	349.3	6 5/8	265	120.2	
9 7/8	250.8	6 5/8	155	70.3	14 1/2	368.3	7 5/8	300	136.0	
10 1/2	266.7	6 5/8	175	79.4	14 3/4	374.6	7 5/8	315	143.0	
10 5/8	269.9	6 5/8	175	79.4	15 1/2	393.7	7 5/8	395	179.5	
11	279.4	6 5/8	180	81.6	16	406.4	7 5/8	450	204.1	
11 5/8	295.3	6 5/8	193	87.7	17	431.8	7 5/8	465	210.9	
11 7/8	301.6	6 5/8	234	106.1	17 1/2	444.5	7 5/8	515	233.6	
12	304.8	6 5/8	235	106.6	20	508.0	7 5/8	705	320.0	
12 1/8	308.0	6 5/8	240	108.9	22	558.8	7 5/8	1125	510.3	
12 1/4	311,1	6 5/8	245	111,1	23	584.2	7 5/8	1145	519.4	
12 1/2	317.5	6 5/8	250	113.4	24	609.6	7 5/8	1145	519.4	
13 1/2	342.9	6 5/8	296	134.5	26	660.4	7 5/8	1300	590.0	
14	355.6	6 5/8	300	136.1	28	711.2	8 5/8	1380	626.0	
14 3/4	374.6	7 5/8	345	156.5	30	762.0	8 5/8	1380	626.0	
15 1/2	393.7	7 5/8	400	181.4						
16	406.4	7 5/8	510	231.3						
17	431.6	7 5/8	541	245.9						
17 1/2	444.5	7 5/8	560	254.0						
18 1/2	469.9	7 5/8	600	272.2						
19	482.6	8 5/8	778	353.6						
20	508.0	7 5/8	780	354.0						
21	533.4			480.0						
21 1/2		7 5/8 7 5/8	1056 1185							
21 1/2	546.1	/ 3/8	COLL	537.5						

12 | IADC Bit Classification

Series		"		1	4	5		6	6 7		7		
		Formations	T y p e	y p	Standard Ro ll er Bearing	Sealed Roller Bearing	Sealed Roll Gauge Pr		Sealed Friction Bearing		Sealed Friction/Gauge P	rotection	Sealed Geothermal
				Doming		Elastomer	Metal	Elastomer	Air	El astomer	Metal		
				1	RC111	GTX-1, RC114	VG-1, GTX-G1, RC115	VM-1, MX-1			VG-1, STX-1, RC117	VM-1, MX-1	
	1	Soft	2	RC121	RC124	RC125				RC127			
			3	RC131	GTX-3	VG-3, RC135	VM-3, MX-3	RC136	STX-3	VG-3, RC137	VM-3, MX-3, MXB-3		
ŧ			4										
Steel Tooth			1	RC211		RC215		RC216		RC217			
	2	Medium	3			RC235		RC236		RC237			
			4									Geothermal	
	3	Hard	1	RC321									
	ľ	паги	3							RC347			
			4							n0347			
				1			VG-03, VG-03M, VGA-02, VGA-02M, GTX-00, GTX-00H, GTX-00M, GTX-03, GTX-03H, RC415	VMA-02, VMA-02M, MX-00, MX-03, MX-05H	RC416		VGA-03, GX-00, GX-03, GX-03H, RC417	VMA-03, MXB-00, MX-03, MXB-03, MX-05	
			2			VGA-10, VGA-10G,	VM-11HM,				VMA-09, VMD-11,		
ı	4	Soft	3			VGA-10M, VGA-11M, GTX-09, GTX-09H, GTX-11H, RC435	VMA-10M, VMA-11MH, MX-09, MX-09G, MX-09H, MX-11H			GX-09, STX-09, GX-09C, STX-09C, GX-09H, STX-09H, GX-09M, GX-11, GX-11C, GX-11M, RC437	VMD-11G, MX-09, MXB-09, MX-09G, MX-09H, MXB-09H, MX-09C, MX-09CG, MX-11		
ı			4			GTX-11C, GTX-11CH, GTX-12H, GTX-18H, GTX-18CH	MX-11CH, MX-18, MX-18H, MX-18CH			VGA-18, GX-18, STX-18, GX-18H, STX-18H, GX-18C	VM-18, VMA-18, VMD-18H, MX-18, MXB-18, MX-18H, MX-18C, MXB-18C, MX-18CH		
			1			VG-22, GTX-20, GTX-20H, GTX-22, RC515	MX-20, MX-20G, MX-20H			VG-20M, VG-22S, VGD-20, VGD-21S, VGD-22S, GX-20, STX-20, STX-20G, GX-20H, STX-20H, GX-20M, GX-22, GX-22M, GX-22S, GX-23, GX-25, RC517	VM-20, VMA-20, VMA-20M, VMD-20, VMD-22S, MX-20, MXB-20, MX-20G, MX-20H, MX-22		
th	ı	Soft	2			GTX-28	MX-20C, MC-28			VG-28, VGD-25, VGD-258, VGD-26, VGD-28, GX-20C, STX-20C, GX-20CH, GX-28, GX-28C, RC527	VMD-25, VMD26, VMD-28, VMD-29, MX-20CH, MXB-20CH, MX-28, MXB-28, MX-28G		
Tungsten Carbide Tooth	5	Medium	3			VG-30, VG-30HM, GTX-30, GTX-30H, GTX-33, RC535	MX-30H			VG-30, VG-30M, VGD-30M, VG-35M, VGA-30, VGD-30, VGD-30S, VGD-33, VGD-34, VGD-35, GX-30, STX-30, STX-30H, GX-30M, GX-30S, RC537	VMD-33, MX-30, MXB-30, MX-30G, MXB-30G, MX-30H	VMG-30	
Tung			4			GTX-30C, GTX-33CG, RC545	MX-33CG			VG-38, VG-38CH, VGD-30C, VGD-36, VGD-38CH, GX-30C, STX-30C, STX-30CG, GX-33, GX-35, STX-35, GX-38C, GX-38CM, GX-38CH, RC547	VMD-38C, MXB-30C, MXB-30CH, MX-35, MX-35CG, MXB-35CG, MX-38C	VMG-35C	
		1							VG-40, VG-44G, VGD-40, VGD-44, VGD-44G, STX-40, GX-44, GX-44G	MX-40, MX-40G	VXG-44		
	6	Medium	2			GTX-40C, GTX-44C, RC615	MX-44CG			VG-44C, STX-40C, GX-44C, STX-44C, GX-45, RC617	VM-44C, MX-40C, MX-40CG, MXB-40CG, MX-44C, MX-44CH		
			3				MX-55			VG-50, VG-55M, VGD-50RG, STX-50, STX-50R, GX-55, STX-55, GX-55RG	VMD-55, MX-50, MX-50R, MX-50RG, MX-55	VMG-55	
			4							VG-66, VGD-66, GX-66, STX-66, GX-68	VM-66, MX-66, MX-68, MXB-68	VMG-68	
			1 2										
	7	Hard	3							VG-70M, VGD-70, STX-70, STX-77			
			4							STX-88			
		Eutro	2							GX-89			
	8	Extra Hard	3							VG-90M, STX-90, GX-95, GX-98M, STX-99			
				4							GA SOW, STATES		

Innovative Drilling Solutions

고객의 성공과 함께 성장하는 비트원

